The pH Scale

For most solutions, the concentration of H_3O^+ ions is a very small number. Even in strongly acidic solutions, the concentration of H_3O^+ ions is only about 0.01 *mol/L*. In strong basic solutions, the concentration of H_3O^+ ions may be as low as $10^{-13} mol/L$.

In 1909, Søren Sørenson proposed a more compact way of expressing the concentration of H_3O^+ ions. His scale is based on logarithms and is known as the **pH scale** (pH stands for potency of hydrogen). According to this scale, the pH of a substance is given by

$$pH = -\log\left[H_3O^+\right]$$

Example 1

Calculate the pH of a solution with an H_3O^+ ion concentration of $4.7 \times 10^{-11} mol/L$.

Example 2 Calculate the pH of pure water. The pH of a solution can be used to determine whether the solution is acidic, basic, or neutral.

- If pH < 7.00 the solution is acidic.
- If pH = 7.00 the solution is neutral.
- If pH > 7.00 the solution is basic.

If pH is measured in an experiment, it is possible to determine the H_3O^+ ion concentration. The following example illustrates this procedure.

Example 3

Convert a pH of 10.33 to a hydrogen ion concentration.

The concentration of OH^- ions is also very small in basic solutions. It is, therefore, useful to express OH^- ion concentrations is a similar way as is done for H_3O^+ ion concentrations, by calculating **pOH**.

$$pOH = -\log[OH^{-}]$$

Example 4

Calculate the pOH of a solution with a hydroxide ion concentration of 3.0×10^{-6} mol/L.

It is worth noting that there is a relationship between the pH and the pOH of a given solution at $25^{\circ}C$.

$$pH + pOH = 14.00$$

Example 5

What is the pOH of a solution whose pH was measured to be 6.4?

The table below illustrates the relationship between pH, pOH, $[H_3O^+]$, $[OH^-]$. It also indicates the acidic or basic nature of solutions based on their pH.

	pН	$\left[H_{3}O^{+}\right]$	$\left[OH^{-} \right]$	рОН	
hydrochloric acid	0	1	10^{-14}	14	strongly acidic
stomach acid	1	10 ⁻¹	10 ⁻¹³	13	
lemon juice	2	10 ⁻²	10 ⁻¹²	12	
vinegar, coke, beer	3	10 ⁻³	10 ⁻¹¹	11	
tomatoes	4	10 ⁻⁴	10^{-10}	10	weakly acidic
rain, black coffee	5	10 ⁻⁵	10^{-9}	9	
urine	6	10 ⁻⁶	10^{-8}	8	barely acidic
pure water	7	10 ⁻⁷	10^{-7}	7	neutral
seawater	8	10 ⁻⁸	10^{-6}	6	barely basic
baking soda	9	10 ⁻⁹	10 ⁻⁵	5	
milk of magnesia	10	10^{-10}	10^{-4}	4	weakly basic
household ammonia	11	10 ⁻¹¹	10^{-3}	3	
bicarbonate soda	12	10 ⁻¹²	10^{-2}	2	
oven cleaner	13	10 ⁻¹³	10 ⁻¹	1	
sodium hydroxide	14	10^{-14}	1	0	strongly basic

Worksheet

- 1. Normal rainwater has a pH near 6. In rainwater that falls close to a coal-burning power plant, the concentration of H_3O^+ ions is $6.23 \times 10^{-4} \ mol/L$. What is the pH? Is this more or less acidic than normal rainwater?
- 2. In household bleach, the concentration of OH^- ions is $5.0 \times 10^{-2} mol/L$. What is the pH?
- 3. In one brand of vegetable juice, the concentration of H_3O^+ ions is $7.3 \times 10^{-5} mol/L$. What is the pH of the juice?
- 4. Analysis of a sample of maple syrup reveals that the concentration of OH^- ions is $5.0 \times 10^{-8} mol/L$. What is the pH of this syrup? Is it acidic, basic, or neutral?
- 5. In a sample of bananas and water, it is found that $[H_3O^+] = 2.51 \times 10^{-5} mol/L$. What is the corresponding pH value? Is the bananas and water solution acidic, basic, or neutral?

Answers

- 1. pH = 3.206. The rainwater is more acidic than normal.
- 2. pH = 12.70
- 3. pH = 4.13
- 4. pH = 6.70. The solution is acidic.
- 5. pH = 4.60. The solution is acidic.