The pH Scale

For most solutions, the concentration of $\mathrm{H}_{3} \mathrm{O}^{+}$ions is a very small number. Even in strongly acidic solutions, the concentration of $\mathrm{H}_{3} \mathrm{O}^{+}$ions is only about $0.01 \mathrm{~mol} / \mathrm{L}$. In strong basic solutions, the concentration of $\mathrm{H}_{3} \mathrm{O}^{+}$ions may be as low as $10^{-13} \mathrm{~mol} / \mathrm{L}$.

In 1909, Søren Sørenson proposed a more compact way of expressing the concentration of $\mathrm{H}_{3} \mathrm{O}^{+}$ ions. His scale is based on logarithms and is known as the $\mathbf{p H}$ scale (pH stands for potency of hydrogen). According to this scale, the pH of a substance is given by

$$
p H=-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right]
$$

Example 1

Calculate the pH of a solution with an $\mathrm{H}_{3} \mathrm{O}^{+}$ion concentration of $4.7 \times 10^{-11} \mathrm{~mol} / \mathrm{L}$.

Example 2

Calculate the pH of pure water.

The pH of a solution can be used to determine whether the solution is acidic, basic, or neutral.

- If $p H<7.00$ the solution is acidic.
- If $p H=7.00$ the solution is neutral.
- If $p H>7.00$ the solution is basic.

If pH is measured in an experiment, it is possible to determine the $\mathrm{H}_{3} \mathrm{O}^{+}$ion concentration. The following example illustrates this procedure.

Example 3

Convert a pH of 10.33 to a hydrogen ion concentration.

The concentration of OH^{-}ions is also very small in basic solutions. It is, therefore, useful to express OH^{-}ion concentrations is a similar way as is done for $\mathrm{H}_{3} \mathrm{O}^{+}$ion concentrations, by calculating $\mathbf{~ p O H}$.

$$
p O H=-\log \left[O H^{-}\right]
$$

Example 4

Calculate the pOH of a solution with a hydroxide ion concentration of $3.0 \times 10^{-6} \mathrm{~mol} / \mathrm{L}$.

It is worth noting that there is a relationship between the pH and the pOH of a given solution at $25^{\circ} \mathrm{C}$.

$$
p H+p O H=14.00
$$

Example 5

What is the pOH of a solution whose pH was measured to be 6.4 ?

The table below illustrates the relationship between $\mathrm{pH}, \mathrm{pOH},\left[\mathrm{H}_{3} \mathrm{O}^{+}\right],\left[\mathrm{OH}^{-}\right]$. It also indicates the acidic or basic nature of solutions based on their pH .

	pH	$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$	$\left[\mathrm{OH}^{-}\right]$	pOH	
hydrochloric acid	0	1	10^{-14}	14	strongly acidic
stomach acid	1	10^{-1}	10^{-13}	13	
lemon juice	2	10^{-2}	10^{-12}	12	
vinegar, coke, beer	3	10^{-3}	10^{-11}	11	
tomatoes	4	10^{-4}	10^{-10}	10	weakly acidic
rain, black coffee	5	10^{-5}	10^{-9}	9	
urine	6	10^{-6}	10^{-8}	8	barely acidic
pure water	7	10^{-7}	10^{-7}	7	neutral
seawater	8	10^{-8}	10^{-6}	6	barely basic
baking soda	9	10^{-9}	10^{-5}	5	
milk of magnesia	10	10^{-10}	10^{-4}	4	weakly basic
household ammonia	11	10^{-11}	10^{-3}	3	
bicarbonate soda	12	10^{-12}	10^{-2}	2	
oven cleaner	13	10^{-13}	10^{-1}	1	
sodium hydroxide	14	10^{-14}	1	0	strongly basic

Worksheet

1. Normal rainwater has a pH near 6 . In rainwater that falls close to a coal-burning power plant, the concentration of $\mathrm{H}_{3} \mathrm{O}^{+}$ions is $6.23 \times 10^{-4} \mathrm{~mol} / \mathrm{L}$. What is the pH ? Is this more or less acidic than normal rainwater?
2. In household bleach, the concentration of OH^{-}ions is $5.0 \times 10^{-2} \mathrm{~mol} / \mathrm{L}$. What is the pH ?
3. In one brand of vegetable juice, the concentration of $\mathrm{H}_{3} \mathrm{O}^{+}$ions is $7.3 \times 10^{-5} \mathrm{~mol} / \mathrm{L}$. What is the pH of the juice?
4. Analysis of a sample of maple syrup reveals that the concentration of OH^{-}ions is $5.0 \times 10^{-8} \mathrm{~mol} / \mathrm{L}$. What is the pH of this syrup? Is it acidic, basic, or neutral?
5. In a sample of bananas and water, it is found that $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=2.51 \times 10^{-5} \mathrm{~mol} / \mathrm{L}$. What is the corresponding pH value? Is the bananas and water solution acidic, basic, or neutral?

Answers

1. $p H=3.206$. The rainwater is more acidic than normal.
2. $p H=12.70$
3. $p H=4.13$
4. $p H=6.70$. The solution is acidic.
5. $p H=4.60$. The solution is acidic.
